If additional retention is needed to secure the prosthesis, OT Cap Normal retentive caps and metal housings can be placed over any OT Equator Profile spheres. The prosthesis will be retained in the same way and the connection will be more rigid. Only the dimension of the attachment will be changed.
OT EQUATOR CASTABLE = SINGLE CASTING

Use separating material on the stone model in the prepared areas to receive the castable posts.

Use longer castable posts in the root channels for easy removal. Reline with castable resin, for higher accuracy.

Place posts and finish margins with composite material. Once resin is cured, cut posts to the required length at root level.

Position OT Equator on the occlusal surface with the paralleling key and continue waxing technique.

OT Equator in the final position. The wax-up has been completed.

For the best results, create the casting with an alloy that has a vickers hardness of 220 or greater.

BUILD UP THE FRAME DIRECTLY ON MASTER MODEL

The plaster model with the OT Equator analog in position. The stainless steel housing and black processing cap are also visible.

Apply a thin layer (.5mm) of wax to the model. Fill the undercuts on the stainless steel housing and attach the connectors.

Connect the parts using a castable resin. Be sure to cover the stainless steel housing.

Add sprues to the framework and remove it from the model. Be sure that the stainless steel housing does not remain inside. The framework is now ready to be invested.

Cast the metal frame and verify the position on the model.

Use composite to bond the stainless steel housing to the frame.

The metal frame with the stainless steel housing in place.

The finished prosthesis on metal frame. After processing, the black caps are replaced with pink caps.
The unique design and exceptionally low 2.1mm profile of the OT Equator 4 in 1 System provides exceptional stability and superior retention when compared with other attachment systems. Due to its lower radius, OT Equator is indicated to correct divergence up to 28 degrees between implants without affecting the functionality of the elastic nylon cap. Caps are available in a wide variety of retention levels.

ATTENTION; Where implant divergence exceed the maximum 28 degrees, Sphero Block and Sphero Flex are recommended case plan options. See Sphero Block and Sphero Flex page 40-41.
ATTACHING THE CAPS IN CLINIC

Select the OT Equator with the appropriate cuff height. Screw the OT Equator into the implant.

Place the protective disk over the OT Equator. Then, place the stainless steel housing with cap on the attachment.

Verify the positioning of the prosthesis before bonding the stainless steel housing.

On the prosthesis, fill the implant sites with a self curing resin and insert into the patient’s mouth.

Remove the prosthesis and verify that the positions of the attachments are correct.

Remove the protective disks.

Carefully trim away the excess resin.

The completed prosthesis.

IMPRESSION TRANSFER

Place the impression coping on the OT Equator.

The impression coping picked up in the impression.

Insert the analog into the impression coping and pour the master model.

Master model with analog in position.

BUILD UP THE FRAME DIRECTLY ON MASTER MODEL

Master model with OT Equator analog in position. Also pictured is the stainless steel housing with black processing cap.

Apply a thin layer (.5mm) of wax on the model. Fill the undercuts on the stainless steel housing with wax and attach the connectors.

Attach the parts using a castable resin. Be sure to cover the stainless steel housing.

Add sprues to the framework and remove it from the model. Be sure that the stainless steel housing does not remain inside.

Finish the metal frame and verify the position on the model.

Use composite to bond the stainless steel housing to the frame.

The metal frame with stainless steel housings bonded in place.

The finished prosthesis on metal frame. After processing, the black caps are replaced with pink caps.
ELASTIC SEEGER
Passive bar connection

The purpose of the OT Equator “seeger” system is to create a passive connection for implant supported bars. The elastic seeger will correct small imperfections created by the chairside impression technique or laboratory casting process. This reduces the risk of the implant bar not seating passively.

Alloys with a Vickers Hardness of 240 or greater are recommended for casting.

THE ELASTIC SEEGER IS MANUFACTURED FROM A SPECIAL HARD PLASTIC WITH A CONICAL DESIGN. THE LOWER PART OF THE RING IS THINNER ADAPTING TO THE DESIGN OF THE ATTACHMENT.
POSITIONING SYSTEM WITH BAR “ELASTIC SEEGER”

OT Equator titanium attachments screwed into the implants. The elastic seeger system will be used to position the bar.

The cast bar in position. Insert the white elastic seeger ring into the cylindrical space.

Using the insertion tool, push down on the white elastic seeger ring until it is fully seated.

A “click” will be heard once the seeger ring is seated over the OT Equator attachment. Remove any excess material to avoid creating a gap during the casting procedure.

After the elastic seeger ring has been inserted, lock the bar into place using the titanium screw cap and the appropriate key.

When the screw cap is tightened, the elastic ring is compressed which prevents unscrewing.

The finished bar secured in the mouth. A passive connection has been achieved due to the elastic seeger rings.

The completed prosthesis. For best results a reinforced superstructure is always recommended.

WAX-UP OF THE BAR DIRECTLY ON MODEL MASTER

Screw the OT Equator attachments into the implant analogs.

Position the seeger castable cylinders, followed by the red plastic seeger for laboratory use on the attachments. Screw the titanium sealing lid into position. Do not overtighten.

Connect the castable abutments with wax or resin.

Before casting, remove the red plastic seeger ring.

The cast bar in position on the model.

The cast framework in position. Undercuts on the stainless steel housing can be blocked out using composite material to maintain a passive connection.

Fit and stability of the prosthesis can be regulated using nylon caps. Various levels of retention are available.

The final prosthesis.